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Elastic Constants of the Central Force Model
for Three Cubic Structures:
Pressure Derivatives and Equations of State!
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The case of the generalized repulsive potential in the central force approximation is used
in Born’s lattice theory to derive the elastic constants versus pressure for the NaCl, CsCl, and
Zn8 structures. The equations are rearranged so that ¢is is a function of K and P, the bulk
modulus and pressure. The isothermal equation of state relates K, P, and the density p, so
that the elastic constants are specific functions of the relation between K and P, and p and P.
As a special case of the theory, the parameter in the repulsive potential z is evaluated by the
measured value K. The theory shows that the simple repulsion v(r) = b/ accounts for
the experimental results, except for a small term due to noncentral binding.

INTRODUCTION

It has been emphasized in several recent pub-
lications [Soga and Anderson, 1967; Soga, 1969 ;
Anderson, 1968; Anderson and Liebermann,
1970] that the shear velocity decreases with in-
creasing pressure for structures with low co-
ordination. This result has several geophysical
applications and is of interest to lattice dynam-
ical theories.

The fact that the shear velocity decreases
with pressure is connected to the stability of
the structure, because the lattice becomes un-
stable when a shear constant vanishes [Born,
1940; Misra, 1940]. Obviously, if a shear con-
stant vanishes at the transition pressure, it
must decrease with pressure in a range of pres-
sure just below the transition pressure. The
question arises, under what circumstances will
an elastic constant, c,;, decrease with pressure,
P:

In this paper I present the equations of the
elastic constants as a function of pressure for
NaCl, CsCl, and ZnS in the case of a central
force model, where the attractive energy is
coulombic and the repulsive energy is general-
ized. This is called the generalized ionic model.
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Some rather tentative extensions are made to
the case of noncentral bonding.

. In the derivations I make two drastic as-
sumptions. The first is that the thermal pres-
sure can be ignored; consequently, the results
are only strictly applicable at absolute zero.
The second is that only first nearest neighbors
are considered in the repulsion. These restric-
tions are slightly relaxed in subsequent sections
to show that the assumptions affect only slightly
the numerical results of the elastic constants
c:; and dey;/dp. After the elastic constants and
the pressure derivatives are found for the gen-
eralized ionic model, the special case of the
repulsion law b/r" is considered in detail. This
law has been used many times before (Barron
[1957]; Blackman [1957, 1958]; Reddy and
Ruoff [1965]; R. W. Roberts, private communi-
cation, 1968), but it is extended to find the
generalized isothermal equation of state, and the
pressures derivatives of the elastic constants
evaluated at zero pressure.

Larrice Dynamic EQUATIONS FOR
Diatomric Tonic CRYSTALS

The fundamental theory is due to Born
[1926] and Born and Goppert-Meyer [1933],
and the method of defining elastic constants
using this theory closely follows that of Barron
[1957] and of Blackman [1957, 1958].

Consider the lattice potential (energy per
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unit cell) for a diatomic lattice where the ion-
ion distance is 7.

¢ = An(Z:2.6 /1) + Mo(r) (1)

where A, is the Madelung constant obtained by
summing (Z.Z.¢*)/r over all lattice sites, and
where M is the coordination number arising
from summing the repulsion over next nearest
neighbors. The repulsive potential v(r) is un-
specified except that it be a function of 7, and
that it vary so rapidly with r that only first
neighbors of type &’ need be considered around
an ion of type k.

The pressure is found from (1) by the opera-
tion
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Partial derivatives are not used since all equa-
tions are understood to be taken under iso-
thermal conditions.
Equilibrium establishes that
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The value of K at P = 0, K,, is obtained from

(5) and (3)
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where V?* is the Laplacian operator

V? = (d&'/dr) + (2/r)(d/dr)
Take

% = A(Z:2:8] Viro) )

For one important repulsive function, v(r) =
b/r", @ has a simple interpretation. In this case
{V0(r)}e = —(n — 1) (dv/dr)e.

Using (6) and (3),a = (n — 1)/9, 2 number
varying between 0.5 and 1.5 but typically unity.
We shall assume that for all reasonable poten-
tials « is a number between 0.5 and 1.5 that
is a measure of the strength of the repulsive
potential. The variation of e with pressure de-
pends upon the pressure variation of the valence
product Z.Z, if any.

The bulk modulus, (5), can also be written as
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where the first term is the repulsive contribution
to K, and where the second term is the Coulom-
bie contribution to K.

The equations for the elastic constants equi-
valent to (8) are now considered. We have, in
Born’s notation,

K = K*+ K’
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Cap.yy) = Cap.yn)’ + Cap.)”

and

c=C+c

D= D"+ D*

where C and D are the constants required for
a noncentrosymmetric lattice in which the cal-
culated value of c, for the centrosymmetric
lattice is modified by subtracting C*/D. The ap-
propriate lattice sums are well known [Cowley,
1962]. We shall use them in the form given in
Tables 1 and 4 of the paper by Anderson and
Liebermann [1970]. Using these sums, we find
the general solutions for elastic constants, which
are listed as follows:




